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Abstract

Scheduling programs represented by task graphs (dags) onto multiprocessors rep-
resented by processor graphs (undirected graphs) is tackled in this project. A
new linear time heuristic (MMH) is proposed for task scheduling. MMH is a sim-
plified version of the Mapping Heuristic. Execution times of programs scheduled
by MMH onto different multiprocessors are compared. Finally, a simple way of

estimating a quality of a topology 1s proposed.
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Chapter 1

Introduction

1.1 Motivation

The role of parallel computers will be significant in the near future. One way
of speeding programs within the same hardware technology 1s to execute them
on multiprocessors. One of the biggest challenges facing compiler writers 1s to

efficiently implement programming languages on parallel computers.

There are three fundamental problems to be solved when compiling a program

for parallel execution on a multiprocessor:

1. Identifying potential parallelism.
2. Partitioning the program into sequential tasks.

3. Scheduling the concurrent execution of these tasks.

Only the last problem 1s addressed in this project. Solving the first two problems
15 relatively straightforward and can be done efficiently if a suitable programming
language 1s chosen ([Sar89]). It can be done, however, even for languages originally

designed for sequential computers ([BJP91]).



CHAPTER 1. INTRODUCTION 2

There are two cases of scheduling the execution of the tasks. In the more
general one, a partial ordering 1s imposed on the tasks, and so two problems must

be solved:

e Each task must be assigned to one of the processors of the parallel computer.

e For tasks assigned to the same processor the best order of their execution

must be found.

In the second, simpler case, all tasks are assumed to exist during the whole execu-
tion time of the program. The only problem to be solved 1s then to assign tasks to
processors in such a way that the computational load 1s distributed evenly between

all the processors with mimimal communication.

The former problem 1s called scheduling and the latter — mapping. Unfor-
tunately both problems are known to be NP-complete. This fact makes find-
ing optimal solutions infeasible. Because of their importance both mapping and
scheduling have been extensively researched by many scientists and considerable

literature exists on this subject.

In the 1nitial stage of this project both mapping and scheduling were investi-
gated. After the literature survey it was decided that scheduling was more inter-

esting — 1t was more general with scope for design of fast heuristics.

Until recently most of the work in this area assumed simphfied models of the
programs to be scheduled and the target computer architectures. The less realistic

of the simplifying assumptions were the following:
1. The number of processors 1s unbounded.
2. All the tasks are independent ([HS88], [GIS77], [BDW&6]).
3. There are no message transfers between tasks ([ACD74]).

4. There is a link between any pair of processors ([Chr89], [Dar91]).

For many applications, however, these assumptions are invalid. Real computers

contain a bounded number of processors. Messages of different sizes are sent
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between pairs of tasks. Processors in computers are connected in some patterns,
not with links between all pairs of processors. These facts are reflected in the more

recent work ([ERL90], [MT91], [HCALS&9]).

The scheduling algorithm implemented in this project, like most of the existing
algorithms, 1s static — the task execution times and message sizes are estimated
at compile-time. Such algorithms have the advantage of low run-time overhead
and scope for finding globally optimal schedules. The obvious disadvantage is that

1n some cases the true task execution times can be estimated only at run-time.

The scheduling algorithm implemented in this project belongs to a class called
list schedulers. In list scheduling, each task 1s assigned a priority. Whenever a
processor 1s availlable, a task with the highest priority is selected from the list of
ready tasks and assigned to a processor. The schedulers in this class differ only
in the way that each scheduler assigns priorities to tasks. The algorithm imple-
mented in this project 1s a modification of the mapping heuristics (MH) described
in [ERL90], which in turn 1s an improved list scheduler using an HLFET (Highest
Level First with Estimated Times) scheme of assigning priorities ([ACD74]). The
modified mapping heuristics (MMH), implemented as a part of this project, gives
similar solutions as the simpler version of MH. It 1s faster than the full MH.
The MMH time complexity is O(m(n + ¢) + m’) as compared to MH complex-
ity: O(m’e + m(n + ¢)), where n is the number of tasks, ¢ — number of direct

dependencies between tasks, and m — number of processors.

The full MH takes into account contention on the multiprocessor links, which
the simpler version of MH and the MMH disregard. The decision of implement-
ing the simpler version of the scheduler was taken because the MH scheduler
implemented only one routing algorithm and obviously in different multiproces-
sors different routing algorithms are used. Thus the results of scheduling are not
completely correct anyway and the overhead of taking contention into account is

relatively high.

Programs to be scheduled are represented in this project as fask graphs. Task

graphs are directed acyclic graphs (dags). Vertices and edges represent tasks and
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communication between them. Several values are associated with each task. They
define the computation time and hardware requirements (e.g. amount of memory)
that must match hardware characteristics of the processor. A value specifying the

message size 15 assoclated with each edge of the task graph.

Multiprocessors are represented as processor graphs. These are undirected
graphs since links between processors are assumed to be bidirectional. Each pro-
cessor 1s described by 1ts processing speed and hardware characteristics. Links are

described by the link capacity (communication speed) and the snttsalization fime.

A scheduler used in the project for various experiments employs MMH to
generate a schedule for a given task graph and a processor graph. Then the
execution of the program scheduled in this way is simulated. In the simulation
the shortest path routing i1s used and contention 1s taken into account. The output
of the simulator contains the achieved speedup over the sequential execution of

the program.

Experiments performed in the course of the project involved running the sched-
uler for different data sets. Various task graphs were used — both examples from
real applications and randomly generated dags. The effects of changing the gran-
ularity of the task graphs were investigated. The granularity was defined as a
ratio of the time required to send all the messages through a single link to the

computation time of all tasks on a single processor.

On the other hand various processor graphs were used. The interconnection
topology and number of processors were changed. Topologies included ring, mesh,

torus, hypercubes, trees, de Bruyn, and Kautz graphs.

1.2 Results

The speedups and processor utilizations for different topologies of processor graphs

and different granularities of the task graphs were analysed and compared.

Then a way of estimating the “goodness” of a topology was proposed. The
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goodness factor was defined as a ratio of the average vertex degree to the average

internode distance.

A strong correlation between the goodness factor and speedups achieved for dif-
ferent topologies was discovered. The enumeration of topologies in order from the
“best” (allowing for the greatest speedup) to the “worst” is as follows: enhanced
hypercube (k=0), Kautz graph - UK(3, z), hypercube, Kautz graph - UK(2, z),
binary de Bruijn graph, symmetrical torus, mesh, enhanced binary tree, ring,

complete binary tree.

1.3 Thesis overview

This thesis consists of eight chapters. Chapter two contains definitions of some
basic concepts used in the rest of the thesis. In chapter three some important
multiprocessor topologies are presented. Their definitions are given and the most
important properties described. Chapter four includes an overview of mapping —
one of the approaches to the problem of distributing parallel programs onto DM-
MIMD machines. Existing scheduling algorithms are presented in chapter five.
Chapter six describes the Modified Mapping Heuristic and compares it with three
existing algorithms. Experiments comparing different topologies are described in
chapter seven. The results of the experiments are discussed and the chapter 1s
concluded by proposing a “goodness factor” — a way of estimating a quality of
a topology. Chapter eight summarizes the results and gives some directions for

further work.
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Basic definitions

2.1 Graphs

Graphs and graph algorithms were basic tools used in the project. Because the
nomenclature useed in in graph theory 1s not consistent — different authors use
different names for the same concept and 1dentical names for different concepts —

I will introduce here some of the crucial concepts.

A graph G = (V| E) 1s defined by a set V of vertices and a set B of edges.
Number of vertices 1s called the order of a graph. Number of edges 1s called the

size of a graph.

Two vertices joined by an edge are said to be adjacent. Graphs considered in
this project have no loops (1.e. edges with one end) and no multiple edges — any

pair of vertices 1s joined by at most one edge.
A degree of a vertex v 1s the number of vertices adjacent to v.

A distance between two vertices u and v 1s the minimum of the lengths of paths

from u to v.

A diameter 1s the largest distance between two vertices in a graph.
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A cligue (or a connected graph 1s a graph with each pair of vertices being joined

by an edge.

2.2 Digraphs

A digraph T = (V, E) 1s defined by a set V of vertices and a set E of arcs. Two

vertices are assoclated with each arc, the head and the tatl

The in-degree of a vertex v € V 1s the number of arcs of [' having v as head.

The out-degree of v 1s the number of arcs having v as tail.

A digraph is n-regular, if and only 1f, each vertex has in-degree and out-degree

equal to n.
An undirected acyclic graph (dag) is a digraph with no cycles.

A source 1s a vertex with in-degree equal 0. A sink 1s a vertex with out-degree

equal 0.
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Graph topologies

Daifferent multiprocessor interconnection patterns were investigated in this project.
Some of the graphs are better suited as multiprocessor interconnection networks.
The results showing speedups achieved for different processor graphs are given in
Chapter 7 of this report. In this chapter, the definitions and basic properties of
the following graphs (which are used as processor graphs) are given: ring, mesh,

torus, complete binary tree, hypercube, enhanced hypercube.

3.1 Ring

Figure 3.1: A 1ing

The ring has a desirable property of the degree of all vertices being constant and
equal to 2 (a ring is 2-regular). The diameter is unfortunately, D = [J%IJ For
|V| > 2 the size is |E| = |V|.
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3.2 Mesh

23

M(3, 3) M(5, 5)

Figure 3.2: Meshes

In this project only two dimensional, square meshes are considered. They are
called here symmetrical meshes. A symbol used to denote a mesh with width z
and height y 1s M(z, y). A symmetrical mesh M(n, n) will be denoted as MS(n).
The maximum vertex degree of a mesh 1s 4, and the diameter, D = Q(W —1).
The size is, |E| = 2(|V| - +/|V]).

3.3 Torus

In practice, all the processors in one computer have the same number of links.
Therefore, 1t 1s uneconomical to have some of the vertices with a degree less than
the maximum vertex degree. We can augment the mesh topology so that all

vertices have the degree, A = 4. A graph like this may be viewed as a torus.

A torus obtained in this way from a mesh M(z,y) will be denoted T(z,y).
Again, TS(n) is an abbreviation for T(n, n). The diameter of a symmetrical torus

is, D = 2[Y2"!). The size, |E| = 2V/|.

3.4 Complete binary tree

The order of CBT(n) is |V| = 2" — 1. Each of the vertices v, i =1,2,...,2" ' =1,
has two descendants: vy; and vq,,,. Each of the vertices v, i = 2,3,...,2" — 1,
has a parent: v ;. Therefore the maxirmum degree 1s A = 3. The size of CBT(n)
15 |E| = 2" — 2. The diameter is D = 2(n — 1) = 2(log,(|V|+ 1) — 1).
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Figure 3.3: A symmetrical torus

CBT(2) CBT(4)

Figure 3.4: Complete binary trees

3.5 Hypercube

A hypercube 15 one of the topologies widely used for interconnecting processors in
parallel computers. Examples of multiprocessors with this interconnecting pattern

include: iPSC ([Sco91a]) and NCUBE ([Sco91b]).

Definition 3.5.1 A hypercube HC(n) (also called n-cube) is an undirected graph
consisting of k = 2" wvertices labeled from 0 to 2" —1 and such that there is an edge
between any two vertices, if and only if, the binary representation of their labels

differ by one bit.

Saad and Schultz discuss in [SS88] many properties of hypercubes. The most

fundamental of these are:
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00 01

10 11

HC(1) HC(2)

Figure 3.5: Hypercubes

e HC(n) can be constructed recursively from two cubes HC(n — 1) by joining
every vertex of the first (n — 1)-cube to the vertex of the second having the

same label.

e There are n different ways of tearing an n-cube, 1.e. splitting it into two
(n — 1)-subcubes so that their respective vertices are connected in a one-to-

one way.

e Any two adjacent vertices A and B of an n-cube are such that the nodes

adjacent to A and those adjacent to B are connected in a one-to-one fashion.
e All cycles in a hypercube have even lengths.

e The n-cube 1s a connected graph of diameter n.

The properties that can be used to recognize hypercubes are stated in the

following theorem:

A graph G(V, F) 1s an n-cube if and only if

1. V has 2" vertices;
2. every vertex has degree n;
3. G 1s connected;

4. any two adjacent vertices A and B are such that the vertices adjacent to A

and those adjacent to B are linked in a one-to-one fashion.
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Distances and Paths in Hypercubes

It 1s obvious from the defimtions that the maximum distance between any two
vertices A and B 1s equal to number of bits that differ between A and B, 1.e. to

the Hamming distance H(4, B).

In many applications 1t 1s important to find several vertex-disjoint paths (par-

allel paths) between two vertices. Two properties of a hypercube are given:

e There are H(A, B) parallel paths of length H(A, B) between any two nodes
of a hypercube.

e There are n parallel paths of length at most H(A, B) + 2 between any two

nodes of an n-cube.

Mapping other Geometries into Hypercubes

The problem of mapping a topology onto a physical interconnection network 1s
very common In the use of multiprocessors. Very often an effective algorithm
for a given geometry exists and we would like to execute it on a general purpose
multiprocessor. The properties of a hypercube are very good in this respect. It
15 possible to map ring, linear arrays, grids of arbitrary dimensionality, and trees

onto a hypercube.

The use of Gray codes for mapping rings and grids into hypercubes is described

in detail in this article.

The size of a HC(n) is |E| = n2"~'. The diameter is, D = n = log, |V| and

the maximum degree 1s A = n = log, |V| (HC(n) is n-regular).

3.6 Enhanced hypercube

There are several ways af enhancing a hypercube, 1.e. adding edges to improve some

of the measures of a hypercube (e.g. diameter, mean distance between vertices,
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traffic density over a link, vertex degree, or routing control complexity). One of

methods of enhancing a hypercube was proposed by Tzeng and Wei in [TW91b].

Let a binary label of a vertex of an n-cube introduced in Defimtion 3.5.1 be
(Zne1 - 212)-
An edge is added between every pair of nodes, (Z,_; - Zp_3Tp_p_1 - " T; - Tg)

and (2,1 Ty pTp_j_1 " T;Tpy), with0 < k< n-—2.

The three dimensional hypercubes with ¥ = 1 and ¥ = 0 are sketched in
Figure 3.6.

Figure 3.6: Enhanced hypercubes

Tzeng and Wei in [TW91b] give and prove correctness of the shortest path
routing algorithm. They also give a formula for the diameter, D = k+[(n—%)/2].

The optimal values of & with respect to various performance measures are

glven:

e With respect to mean internode distance (for uniform traffic distributions),

kopt =0
e With respect to diameter, k,,;, = 0.

e With respect to traffic density (for low reference locality), k,,, = 0 for even

n,and k,; = 1 for odd n.

The article [TW91b] is concluded with a broadcast algorithm and some prag-
matic considerations. The latter part includes a criterion for comparing different
structures. It is defined as (A x D), where A is a degree of vertices and D 1s

a diameter. The authors argue that this value 1s a good criterion for comparing
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different topologies. The measure of (A x D) is better in enhanced hypercubes

than in regular hypercubes.

Enhanced hypercubes with £ =0

In this project only enhanced hypercubes with ¥ = 0 (which i1s optimal with

respect to most measures) were considered.

The symbol EHC(n) will be used to describe an enhanced hypercube with
k = 0 based on HC(n)

The diameter of EHC(n) is D = [§] = [%], the degree A = n+1 =
log, |[V| + 1, the size |E| = (n + 1)2" ', the order is of course unchanged with

respect to a regular hypercube and is equal to 2",

3.7 De Bruijn graphs

De Bruijn digraphs

The most natural way to define de Bruyn graphs (and Kautz graphs, cf. Section
3.8) is as digraphs. The approach is similar to the way of defining a hypercube
(cf. Definition 3.5.1). This defimtion is given after [BP89].

Definition 3.7.1 The de Brugyn digraph B(d, D) is the digraph whose vertices are
the words of length D on an alphabet of D symbols (or d-ary D-tuples). There
15 an arc from a vertex & to a vertex y iof the D — 1 first symbols of y are equal
to the D — 1 last symbols of z. That is, there is an arc from (2pZp_y - -2y) to

all the vertices (Zp_1Zp_q- - 1) where a 1s any symbol of the alphabet (shifting

property).

Therefore B(d, D) is d-regular, its diameter is D and its order is [V | = d°.
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There exist also other definitions of de Bruijn digraphs ([BP89]), e.g.:

e a definition using line digraph iterations

e a definition from congruences

A de Bruyn digraph B(d, D) has the interesting property that there exists

exactly one path of length D between any two vertices.

Undirected de Bruijn graphs

Definition 3.7.2 The undirected de Brugjn graph UB(d, D) 1s the undirected graph
obtained from the B(d, D) by forgetting orientations of the arcs, remowing self

loops, and replacing each double edge by a single edge.

0.

Note: There 1s an alternative definition of the undirected de Bruiyn graph
([SP89]) which preserves self loops and double edges. In this project only the
Definition 3.7.2 1s used.

Now the vertex (zpxp_; - - -2, ) 1s adjacent (or equal) to all vertices (z5_; - - 2 @)
and (azp - -z,;), where a 1s any symbol in the alphabet. Hence the maximum

degree A is equal to 2d (note that UB(d, D) is not regular). The order is [V| = d”.

It 1s interesting to note that de Bruin graphs use edges more “economically”
than hypercubes. E.g. a hypercube with diameter and maximum degree equal to 10
has 1024 vertices, whereas de Bruijn graph with the same properties has 9,765,625
vertices and Kautz graph (cf. Section 3.8) 11,718,750. Or, to find another example,
a hypercube with 256 vertices has a diameter U = 8 and maximum degree A = 8§,
de Bruijn graph with 256 vertices and diameter equal to 8 has the maximum degree

of only 4.

De Bruin graphs are promising and they have not been investigated as thor-
oughly as hypercubes. Bermond and Peyrat describe however some properties in

[BP89]. The most important of these are:
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e there exists a simple routing algorithm

e asymptotically optimal loads and forwarding indices
e good broadcasting times

e uniformity and algebraic structure

e fault tolerance

e extendability

e embeddability of other topologies (d-ary tree of height D, shuffle exchange,

linear array)

e asymptotically optimal area layout

Binary de Bruijn graphs

Figure 3.7: Binary de Bruin graphs

In this project only binary undirected de Bruiyn graphs were studied, 1.e. graphs
of the form UB(2, D) = UBB(D). The maximum degree of UBB(D) 1s A = 4, the
diameter is equal to D = log, | V| and the order is |V | = 2°.
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3.8 Kautz graphs
Again, after [BP89] a Kautz digraph is defined first.

Definition 3.8.1 The Kautz digraph K(d, D) s the digraph whose vertices are the
words of length D over an alphabet of d+ 1 symbols, such that any two consecutive
symbols are different. There 1s an arc from x to y of the D — 1 first symbols of y
are equal to the D — 1 last symbols of . That 1s, there 1s an arc from (zp - 2,)
to all vertices (zp_y - -z @), where a 15 any symbol of the alphabet different from

Zq.

K(d, D) is d-regular, its diameter is D and its order is d° + d° .

UK(2,1) UK(2,2)

Figure 3.8: Undirected Kautz graphs

Definition 3.8.2 The undirected Kautz graph UK(d, D) 15 obtained from K(d, D)
by removing the orientations of the arcs and replacing each double edge by a single

edge.

The maximum degree of UK(d, D) is 2d, its order is d° + d° .

The properties of Kautz graphs are very similar to the properties of de Bruyn

graphs given in the previous section.
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Mapping problem

The problem of distributing a parallel program onto a multiprocessor may be
viewed in the following way: Suppose several tasks were to execute in parallel, some
of which commumcate with each other. When assigning the tasks to processors,
pairs of tasks that communicate with each other should be placed, if possible, on

processors that are directly connected (or are as close as possible one to another).

4.1 Mathematical formulation
Definition 4.1.1 states the mappmg problem in a formal way.

Definition 4.1.1 Mapping problem

Let the graph of the program (a task graph) to be mapped onto a multiprocessor
be denoted G = {Vr, Eg), where Vi 1s a set of tasks and each edge (u,v) € Er
denotes that tasks u,v € Vo communicate with each other. Let the processor graph
be denoted Gp = {Vp, Ep), where Vp 15 a set of processors and Ep is a set of links

connecting processors.

The mapping to be found s a function. f,, : Vo — Vp.

18
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The function f,, should minimize the objective function defining the quality of

the mapping.

For the choice of different objective functions see [LA87] and [Bok81]. For

instance in [Bok81] cardinality 1s used as the objective function.

Definition 4.1.2 Cardinality |f,,| s defined as the number of task graph edges

that fall onto processor graph edges.

=2 Y erlo,y) % cnlfnl@), Ful®)

2 T, yEVY
where
|1 af (z,y) € By
er(z,y) = { 0 otherwise
cp(2,y) = { 0 otherwise

Many solutions to the mapping problem exist. Some of them differ slightly in

the formulation of the problem.

An overview of existing mapping heuristics 1s presented in this chapter.

4.2 Kernighan-Lin algorithm

This algorithm was designed with a different application in mind, and so its for-
mulation 1s different than in Defimtion 4.1.1. It was only later that this algorithm

was used to solve the mapping problem.

The Kernighan-Lin (KL) algorithm ([KL70]) solves the following problem:
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Given a graph G with costs on its edges, partition the nodes of G into
subsets no larger than a given maximum size, so as to minimize the

total cost of the edges cut.

Kernighan and Lin in [KL70| analyze different approaches and describe why

they cannot be used:

Exhaustive Search requires a very large amount of computation and even for

some reasonably sized processor graphs is out of the question.

Random Solutions — 1t 1s not suitable because typically there are very few
optimal partitions, so that the probability of success on any trial can be

extremely low.

Max Flow Min Cut — the Ford-Fulkerson algorithm cannot be used to solve
this problem because, although it finds quickly a minimal cost cut, there 1s

no way of constraining the sizes of the subsets.

Clustering tries to find clusters, 1.e. groups of nodes which are strongly connected
In some sense. Again it 1s not suitable because 1t 1s difficult to constrain the

sizes of the subsets.

The basic KL algorithm finds two subsets of equal size of a given graph of an
even number of vertices, trying to minimze the cost of the cut. This problem 1is
certainly simpler than the general one stated before. Given a graph G = (V| E},
V ={v;,vy,...,03,_1,¥;,} and a cost matrix C' = (c;; ), the algorithm starts with
any initial partition A4, B of V and tries to decrease the external cost (i.e. sum of
the costs of all edges (v, u) connecting vertices v € 4 and u € B) by interchanging
subsets X and Y (of the same size) of A and B. If at any step no improvement 1s
possible, the algorithm stops. The subsets X C A and Y C B are chosen by the

following algorithm.

The elements @ € A and b € B are chosen, such that if they are interchanged,
the gain (1.e. the reduction in cost) 1s maximum. The vertices a and b are stored

aside and removed from the subsets A and B. This step 1s repeated for the new
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subsets A and B until they become empty. Then X and Y are chosen to obtain

the largest possible gain.

Experiments showed that the results of this algorithm are satisfactory. The
time complexity however can be improved. The authors present two ways of
speeding up the procedure. Both of them try to find faster the pair @ and & of
vertices to be exchanged. The faster of the two methods gives the overall running

time of O(n?).

Modifications of the base algorithm

Unequal-Sized Subsets to make the above algorithm work for two subsets of
unequal size 1t 1s enough to make the starting partition into subsets of re-
quired sizes and to restrict the maximum number of pairs to be exchanged

in one pass of the procedure.

Elements of Unequal Size each node of size £ > 1 can be modeled by a cluster

of k nodes connected by edges of high cost.

Multiple- Way Partitions a 2-way partitioning procedure is used recursively
until the required number of subsets 1s generated, thus a pairwise optimality
1s achieved. It does not guarantee, of course, that the final partition 1s

optimal.

Finally ways of generating good starting partitions are discussed.

Fiduccia-Mattheyses algorithm

The modified version of KL algorithm was proposed by Fiduccia and Matthey-
ses in [FM82]. The linear time complexity of this version of the algorithm was
achieved by using more efficient data structures and vertex displacement instead
of exchanges. The ability to handle graphs with variable vertex weights was a

further improvement.
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4.3 Parallel version of the Kernighan-Lin algorithm

A parallel version of the algorithm described in Section 4.2 was given by Gilbert
and Zmijewski in [GZ87]. The algorithm presented in this article is suitable for

distributed memory machines.

The vertices of graph G = (V, E} are partitioned among p > 2 processors in a
roughly even manner. It is assumed that G, 1s a large sparse graph, so that 1t can
be efficiently stored as a collection of adjacency lists. Furthermore all edges have
cost one, because for the considered application only number of edges connecting
subsets matters. For each vertex assigned to a given processor a list of adjacent

vertices 1s stored in the local memory of the processor.

The algorithm begins by dividing the p processors into two sets P, and P, of
equal size (of course if p 1s odd, the sizes differ by 1). The partition of vertices
induced by P, and P, 1s the initial partition. The external cost of the partition 1s
then minimized by a simplified version of the KL algorithm. First one processor

15 selected in each part, say I, € P, and [; € P, to be the leader of that part.

Each processor computes the D values ([KL70] of all its vertices and sends
these values to 1ts leader. Next each leader selects a vertex with the largest
D value. These two vertices are the candidates to be interchanged. The two
vertices are marked and stored aside, then the leaders inform each other about
their choice. This step (beginning with updating D values) is repeated for the
unmarked vertices. When the loop terminates, the leaders decide which vertices

to swap.

The procedure 1s repeated until no further gain can be achieved. Next, the

algorithm 1s recursively applied in parallel to P, and 7.

The authors show that the computational complexity of the algorithm i1s
O(elognlogp)

where n 15 the number of vertices and e 1s the number of edges of Gr.
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The total number of messages passed is O(n log p) and they contain the total

of O(max(nlog® p, elog p)) integers.

4.4 Recursive mincut bipartitioning

This 1s another modification of the KL algorithm. Recursive mincut bipartitioning
(ARM) was proposed by Ercal et al. in [ERS90]. ARM 1is very efficient but
the processor graph must be in a form of a hypercube. KL and ARM use the
same optimality criterion, 1.e. the total weighted interprocessor commumnication
cost under the mapping, subject to the constraint that the computational loads

on the processors be balanced to within a specified tolerance.

The essential 1dea of the algorithm 1s to make partial processor assignments
to the vertices of the task graph during the recursive bipartitioning steps. At
level k£ 1n this process, for each vertex, the kth bit of the address of its processor

assignment 1s determined.

The first bipartitioning of the task graph separates the vertices into two groups,

each to be assigned to a distinct subcube of the order %', 1.e. the highest-order bit
of the processor to which a vertex 1s to be assigned is uniquely determined. At each
succeeding level, during bipartitioning, edge costs are weighted by the number of

differing bits in the partial processor assignment of the relevant vertices.

In [ERS90] ARM was compared with simulated annealing. The quality of
solutions produced by the recursive mincut was within 10% of the solutions from

simulated annealing, but required less than one-hundredth the computation time.

The time complexity of ARM 1s O(nlog, m), where n is the number of tasks,

and m 1s the number of processors in the hypercube.

However, 1t must be underlined once more that ARM can be used for mapping

task graphs onto hypercubes only.
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4.5 Pairwise interchange algorithm

In this algorithm, due to Bokhari ([Bok81]), the assumption is made that |V;| =
|Vp| (see Definition 4.1.1), 1.e. numbers of tasks and processors are equal (of course
if |Vz| < |Vp|, a task graph can be adjusted by adding a suitable number of dummy
vertices). The algorithm starts with a random assignment of V; to Vp, and then
teratively interchanges pairs of vertices if the interchange leads to a gain in the
cardinality (see Definition 4.1.2) of the mapping. If no interchange leading to a

gain 1s found, a subset of Vi 1s randomly interchanged.

The time complexity of this algorithm for a class of multiprocessors called
finite element machines (eight-neighbours mesh) is O(rn’), where n is the number

of tasks (and the number of processors).

This heuristics performed well for small-sized problems. The large time com-

plexity of the algorithm makes it, however, not suitable for bigger problems.

More realistic objective functions

A modification of this algorithm is presented in [LA87]. Two improvements were

proposed:

1. The mnitial mapping rather than being random 1s generated by a heuristic.

2. Four different objective functions were designed. Each of which 1s appropri-

ate for a different class of problems.

Again the restriction that |V;| < |Vp| applies.

4.6 Graph augmenting heuristics

The use of a graph augmenting approach as a tool for mapping task graphs onto

processor graphs is described in [PW87].
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Augmenting the interconnection network, 1.e. adding some auxiliary edges that
decrease distances between the processors, results in a processor graph much more

suitable for a given program.

The authors consider the simplest possible interconnection pattern between
processors: a one-dimensional linear array. To find out a minimum set of edges
needed to augment a line-like multiprocessor, they make use of the concept of an
optimal path cover. If Gy = (Vy, Er) is a task graph, an optimal path cover Sg,
of G115 a set of vertex disjoint paths that cover all the vertices of G4 and has the

maximum possible number of edges.

Two main results are described in the paper:

1. An algorithm to find efficiently an optimal augmentation of the line-like

multiprocessor, given an optimal path cover of the program graph.

2. A fast algorithm for finding an optimal path cover of a given graph. This
problem 1s in general NP-complete. The algorithm presented in the article
solves the problem for a subclass of graphs called /-cacti. A l-cactus 1s a

simple undirected graph where no vertex lies on more than one cycle.

The above algorithms can be combined into a single algorithm which given a

1-cactus finds an optimal augmentation.

The time complexity of this algorithm 1s O(rn), where n is the number of tasks.
Task graphs are restricted, however, to be 1-cacti. This algorithm, rather than
mapping a task graph onto an arbitrary processor graph, augments a line-like
multiprocessor. The authors don’t give any hint as to how useful this approach 1s

1n practice.

4.7 Comparison of mapping heuristics

The article [CSG89] evaluates several mapping heuristics. As some of the heuristics

work only with hypercube processor graphs, the comparison was restricted to the
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mapping onto hypercube multiprocessors.

In the course of comparison experiments some of the algorithms were improved
(e.g. by using an efficient data structure called a bucket list) and a new fast (linear

time) greedy heuristic was proposed.

The following heuristics are described in the article:

e Chen's Greedy heuristics (G)

e Simple Greedy heuristics (SG)

e All-Swaps Steepest Descent Local Search (LS)

e Cube-Heighbours Steepest Descent Local Search (LSC)

e Kernigham-Lin Algorithm (KL)

e Recursive Mincut Bipartitioning (ARM)

e Cube-Neighbour Swaps Simulated Annealing (SAC)

In addition to the above basic heuristics, combinations of two algorithms (one

for obtaining the initial solution and the other for improving it) were evaluated:

G + LS, G + LSC, G + KL, ARM + LS, and SG + LSC.

The fastest method — SG — gives solutions of the worst quality. SAC which
gives the best results 1s the slowest heuristics. The exact results in terms of the
quality of the graph embedding and the speed of procedures vary depending on
the task graphs. Four different kinds of task graphs were used to evaluate the

heuristics: random graphs, geometric graphs, trees and hypercubes.
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Scheduling

5.1 Definitions

Independent tasks

Definition 5.1.1 Scheduling a set of independent tasks
Given a set of independent tasks with different processing times T = {t;,...,1,},
and a set of processors P = {py,...,pm}, find an assignment of the tasks to the

processors so as to minimize the total ezecution time of all the tasks.

This problem 1s proved to be NP-complete. It is highly unlikely then that a
polynomial-time algorithm solving the problem exists. However, many polynomial-

time heuristics giving good results have been described.

Gonzalez et al. in [GIS77] show that their heuristic gives schedules with a finish

time at most twice the optimal finish time.

[HS88] is one of the recent papers on this subject. In this article a polynomial-

time, (1— --)-approximation algorithm, i.e. an algorithm which delivers a schedule

27
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that finishes within at most (1— =) times the optimal schedule length, is described.
Hochbaum and Shmoys showed that for any fixed ¢ > 0 there exists a polynomal
time e-approximation algorithm. This result 1s very good, but the problem stated

in Definition 5.1.1 15 not too practical.

Tasks with precedence constraints

The problem that arises in many applicationsis the scheduling of tasks constrained
by precedence relations. Task z 1s an immediate predecessor of task y if task =
has some data to transfer to task y. For easier analysis it 1s assumed that data
transfer starts after task z terminates, and task y commences execution only after
receiving data from all 1ts immediate predecessors. Existing algorithms differ in

the level of refinement of this model.

A task graph 1s a convenient way of representing programs for this type of
schedulers. A typical defimtion of task graphs includes sizes of individual tasks

and messages exchanged between tasks.

Definition 5.1.2 A task graph Go = {Vy, Bz} 15 a dag with n vertices, Vo =
{U11U2:"':Uﬂ}‘
A function INS : Vi — R defines for each task its size.

A function M : Ex — R defines for each edge (u,v) € Eq, sizes of messages

passed between tasks u and v.

If all the processor speeds are the same, a task size INS(v) is equivalent to the

computation time of task v.

If all links connecting processors have the same capacity (communication speed)
and no initialization times are assumed, the message size M((u, v)) is equivalent

to the time required to transfer the message from u to v over a single link.
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Figure 5.1: Task graphs

The commumnication time 1s zero, if tasks u and v are assigned to the same
processor. However, if tasks u and v are assigned to different processors, then the

communication time depends on the multiprocessor model.

Virtual Distributed System described in [Chr89] is an example of a much sim-
plified model. In this model the communication time 1s equal to a strictly positive
fixed value, if the tasks are assigned to distinct processors, irrespective of the
distance. Any two processors may transfer data via a direct communication link
and the number of simultaneously transferred messages on link 1s unhmaited. This
model 1s an oversimplified one because the program execution time 1s independent

of the multiprocessor topology.

The same model 1s used, for example, in [Dar91]. Some of the older papers (e.g.
[ACD74]) simplify the model even further, assuming that communication times

are always zero, 1.e. the function M is constant: M(e) = 0,Ve € Eq.
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A more sophisticated model of a multiprocessor is used for instance in [ERL90],

[MT91], and [HCAL89).

Definition 5.1.3 A processor graph Gp = {(Vp, Ep) 15 an undirected graph with

m wvertices Vo = {v;,vy,..., v, } representing processors.

An edge (u,v) exists between vertices u and v if and only if processors repre-

sented by u and v are connected by a direct link.
A function S : Vp — R defines the speed of each processor.
A function C : Ep — R defines a capacity of each link {communication speed).

A function I 1 BEp — R defines the wnitialization time of each link.

Figure 5.2: Processor graphs

It 15 assumed that a processor can execute a task and communicate with other

processors at the same time.

Small modifications of this model are possible. E.g. in [MT91] link initialization
times are assumed to be zero. On the other hand the model of Definition 5.1.3 1s

extended to take into account memory requirements of the tasks.

Definition 5.1.4
Memory requirements of the tasks are defined by a function MR : Vo —» N

Memory capacities of the processors are defined by a function MC : Vp - N.
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A task vy € Vi may be assigned to a processor up € Vp if MR(vg) < MC(up),

i.e. memory capacity of the processor up 1s at least as big as the memory required

by the task vy,

A scheduler takes two inputs: a task graph and a processor graph. It produces

as an output a pair of values for each task:

® a processor number
e a starting time of the task
Gantt chart 1s a pictorial representation of this output. For example the task

graph G}F (Figure 5.1) scheduled onto a multiprocessor represented by a processor

graph Gi, (Figure 5.2) could result in a Gantt chart as shown on Figure 5.3.

P, P, P,
0f1]2
6
413 |5
12
6
18

Figure 5.3: A Gantt chart

During the literature survey three papers describing heuristics using the model
defined in Definitions 5.1.2 and 5.1.3 were found. Overviews of these heuristics

will be given in the rest of this chapter.
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5.2 Earliest Task First algorithm

The heuristic called ETF (Earliest Task First) was proposed by Hwang et al. in
[HCALS9]. This is an event-driven algorithm.

Two assumptions are made:

1. Initialization times (cf. Definition 5.1.3) are assumed to be zero.

2. Links are assumed to be contention free.

The algorithms maintains a set A of available tasks (i.e. tasks with all predeces-
sors already scheduled) and a set I of free processors. For each task, t, its earliest
possible starting time e,(t) is calculated. The starting time is determined by the
time when i1ts predecessors are finished, the size of the messages from 1ts preceding
tasks and distances between processors assigned to the task and its predecessors.
The earliest starting time among all available tasks, ei\, 15 calculated as follows:

" = min(e, (1))
s tea >~ ®
The task t, for which e (t) = ei\, 15 scheduled first. If there are more such tasks,

the conflict 15 resolved by using a priority assigned to each task. If the priornty

list 15 obtained by a critical path analysis, such a strategy 1s called ETF/CP.

The time complexity of ETF is O(n*m) ', where n is the number of tasks, and

m 15 the number of processors.

5.3 Depth-first breadth-next heuristic

This algorithm, described by Mancharan and Thanisch in [MT91], uses a technique
called depth-first breadth-next (DFBN) search to find a task ordering. A program

'This doesn’t take into account a calculation of distances between processors. A more accurate
formula is O(m(n® + m)) if distances are precalculated, or O(m(n® + m?)) if they are computed
each time the algorithm is executed.
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and a multiprocessor are modeled as in Definitions 5.1.2, 5.1.3, and 5.1.4. The

initialization times are assumed to be zero.

DFBN tries to satisfy two properties:

DP1 — assignment of independent tasks to different processors.

DP2 — assignment of dependent tasks to the same processor.

In the algorithm the task graph 1s searched using the depth-first breadth-next
search. Tasks in one path are assigned to the same processor (DP2). Whenever
a new path 1s started, a processor with minimum load 1s chosen. The load of
a processor 1s simply the sum of execution times of all the tasks that had been

assigned to the processor.

Two priority lists: of tasks and of processors are used to resolve conflicts. The
priority of a processor is just a distance from the ‘most capable’ processor (it is
chosen by giving consideration to either the number of links 1t has or the overall

link capacity of the processor). Several factors determine task priorities:

1. Tasks with long execution times must get priority.

2. Tasks with large communication requirements must get priority.
3. Tasks with large numbers of successors must get priority.

4. Tasks with long-length successors must get priority.

5. Tasks with large memory space requirements must get priority.

The time complexity of this algorithm is O(nlog, m + e + m”).

5.4 Mapping Heuristic

The Mapping Heuristic (MH) was proposed by El-Rewim and Lewis in [ERL90].
Programs and multiprocessors are modeled according to Definitions 5.1.2 and

5.1.3.
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This algorithm belongs to a class of list schedulers using an HLFET (Highest
Level First with Estimated Times) scheme of assigning priorities ([ACD74]). A
priority assigned to each task 1s just a critical path of this task. Because commu-
nication 1s taken into account, the critical path of a task 1s not static and may
change according to the mapping. Critical paths are calculated when the map-
ping 1s not known, so 1t 1s assumed that all messages are sent through a one-hop

channel.

T,(9/16)

Figure 5.4: Critical paths

The value of the critical path for each task 1s called its level Figure 5.4 shows
the graph GlT from Figure 5.1, the first value in parentheses after the name of the

task 1s the task size, the second value 1s the task level.

MH 15 an event-driven algorithm. There are four type of events:

(1) task t is ready
(2) task t is done
(3) a message needs to be sent from p; to p,

(4) a message sent from p, arrived to p,

The event list 1s initialized by inserting the event “task ¢ i1s ready” at time zero
for every task t without predecessors. Events (1) and (2) are sorted according
to levels of their tasks. Whenever an event “task t 1s ready” occurs, the task t
15 assigned to this processor which ensures the earliest possible completion of t.

When “task t 1s done” occurs, all successors of ¢ are tested for readiness. For each
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task t; which becomes ready, an event “t; 1s ready” 1s inserted in the event list.

Events (3) and (4) are used for handling contention.

MH 1s the only heuristic which takes into account contention while generating

the schedule.

The time complexity given by El-Rewini and Lewis for their algorithm 1is
O(n*m® + n®m + m®) which could be rewritten as O(em® + nm) which in turn is
equivalent to O(em®), because n = O(e). As before, n is the number of tasks, e

— size of the task graph, and m — number of processors.

Comment on the time complexity of the calculation of critical

paths

El-Rewini and Lewis in [ERL90] do not give an analysis of the time complexity of
the calculation of critical paths which 1s a part of the MH algorithm. In the case
of a task graph, calculating levels of tasks 1s equivalent to the problem of finding
the shortest paths from one of the vertices to all other vertices. In the above
calculation of the time complexity of MH, an assumption was made that a linear
time (O(n + ¢)) algorithm for calculating shortest paths was used ([CLR90]). It
15 surprising however that some of the papers recommended using the Dikstra
algorithm for calculating longest/shortest paths in a dag. These papers include a
classical book on graphs [Deo74] and a very recent article on critical path analysis
[KBG90]. The time complexity of the Dijkstra algorithm is O(n®) or, for sparse
graphs, O(elogn). If this was the algorithm used by El-Rewini and Lewis then, of
course, my remark about equivalence of O(n’*m’ + n’m + m’) and O(em’ + nm)

1s not valid. This would make MH much slower then DFBN or MMH.
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Modified Mapping Heuristic

MMH — a modified version of the Mapping Heuristic 1s presented in this chapter.
Both heuristics use a concept of a crifical path. MH uses additionally an event
list — task which became ready first are scheduled first. In MMH, critical paths

are the only criteria which decide about the schedule.

6.1 Selecting a scheduler for the project

The aim of this project was to investigate what speedups can be achieved by
distributing the same task graph onto multiprocessors with different topologies.
So, the first requirement for the scheduling heuristic was that 1t must take into
account an interconnection pattern of the multiprocessor. Of the three heuristics
(ETF, DFBN, MH) described in the previous chapter, DFBN does not satisfy
this requirement — only distances between one “most capable” processor and all

the other processors are used and their role 1s secondary.

This left two heuristics: MH and ETF. To choose between these two, another
factor had to be taken into account. It was decided that the algorithm used in
this project had to cope with big task graphs, of the order of at least several

thousand tasks. So, the second requirement was a low time complexity, preferably

36
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linear (O(n + ¢)) for a constant number of processors. Unfortunately both MH
and ETF are described to have quadratic time complexities. After some analysis,
1t was established that the complexity of MH 1is in reality linear. At this point it
was decided that MH or 1ts modification will be used in the project to evaluate

properties of different topologies.

6.2 New heuristic

MH takes contention into account, which means that within the MH algorithm a
routing algorithm 1s implemented. The routing algorithm proposed by El-Rewim

and Lewis is called adaptive routing. The disadvantage of this approach 1s twofold:

e A fixed routing algorithm 1s used. Thus porting the scheduler to a machine

with a different routing mechanism requires the scheduler to be rewritten.

e Additional cost of maintaining contention information is high.

The time complexity of full MH is O(em’ + nm) as compared with O(em +
nm + m’) for a contention-free version of the Mapping Heuristic (CFMH). The
complexity of CFMH is likely to be the best possible. The element m® is necessary
for calculating shortest distances between processors (e.g. the Floyd algorithm -
cf. [AHU87] and [Deo74]). The elements e and n must be present (each vertex and
edge of a task graph must be considered at least once), perhaps not multiplied by

m, although scope for improvement here seems to be very small.

It 15 possible, however, to make this algorithm faster with respect to a constant
factor. A modification proposed here 1s such an improvement. This new version
of the Mapping Heuristic 1s called here the Modified Mapping Heuristic (MMH)
The basic idea of the MMH 1s very similar to this of the MH. However, less
computation 1s involved and data structures are simpler. In particular an event

list 1s not used.
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6.3 The MMH algorithm

Unlike in the three algorithms described in the previous chapter, the full model of
Definitions 5.1.2, 5.1.3, and 5.1.4 1s implemented in MMH.

Calculating shortest paths

The process of calculating shortest paths between all pairs of processors is not
straightforward in this multiprocessor model. Cost of sending a message of size m

over a link connecting processors p; and p, 1s

m

m+f(@1,Pz))

It easy to demonstrate that shortest paths are determined not only by a multi-

processor topology but by a message size as well.

P
2 m=10 [ m=100

5/10 5/10 path: (P1 P) 11 101

P
3
path: (P1,Pz,l§) 24 60

P 11
1 ! |33

Figure 6.1: Dependency of shortest paths on a message size

In the multiprocessor shown on Figure 6.1, the shortest path between proces-
sors p; and p, 1s (p;p,) for a message of size 10, and (p, p,p,) for a message of size
100. Here, as on Figure 5.2 the first number associated with each link is its speed,

the second one 1s the 1nitialization time.

A typical task graph contains messages of different sizes. This would require
maintaining several shortest paths tables for several message size ranges. Moreover
computing these message size ranges and appropriate tables seems to be a very

complex problem.

There are several ways of simphfying this problem. One, adopted by Hwang
et al. in [HCAL89] and by Mancharan and Thanisch in [MT91], is to ignore ini-
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tialization times. This approach is very inaccurate if messages are small. The
second method, adopted by El-Rewini and Lewis in [ERL90], is to assume that all
links are 1dentical and simply uses number of hops to find shortest paths. This ap-
proach ignores a very interesting case of distributing programs onto heterogeneous

multiprocessors, e.g. networks consisting of separate computers.

The (heuristic) algorithm used in MMH first calculates the average message
size, . The value of r2 1s then used to find shortest paths using the Floyd
algorithm. While finding shortest paths two tables are generated, SPC contain-
ing a sum of inversions of link capacities (i.e. unit transmission times), and SPI

containing a sum of initialization times.
If a shortest path between processors p; and p,, is: (p;,p;, .. .p;,) then:

n—1 1

SPC@h:piz,) = X::I m

n—1
SPI(pilnp!},) - Z I((p?',' ’p?';'+1))
j=1
Both SPC and SPI are assumed to be zero for messages transferred between tasks

on the same processor.

SPC(p,p) =0

SPI(p,p) =10

Time of sending a message of size m between processors p; and p, can be

calculated as:

t@l:p% m) =mx SPC(plnp2) + SPI@IJP?)

Algorithm structure

The construction of MMH 1s very similar to MH, although, results produced by
two heuristics may differ slightly. MMH 1is explained by a following fragment of

pseudocode:
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procedure HHH is
begin
Load the task graph
Load the processor graph
Calculate the level of each task
Calculate shortest distances between processors
Initialize 1ist of ready tasks, RTL
while RTL is not empty loop
Get task t from RTL
ScheduleTask(t) ;
end loop;
end HHH;

A list of ready tasks 1s maintained throughout the schedulng. It 1s mitialized
with all the tasks with no predecessors. The instruction “Get task t from RTL”
removes the task with the highest level from the list of ready tasks. The procedure

ScheduleTask 1s as follows:

procedure ScheduleTask(t) is

begin
Proc := p where FinishTime(t,p) < FinishTime(t,i), 0 <t <m
assign t to Proc
HandleSuccessors(t);

end ScheduleTask;

Function FinishTime (t,p) returns the finishing time of a task ¢ if 1t 15 placed
on a processor p. This takes into account the finishing time of the last task
assigned to p and the time of arrival of all messages from predecessors of ¢ assuming

contention-free links.

Procedure HandleSuccessors(t) checks whether any of successors of ¢ be-
comes ready, 1.e. all its predecessors except ¢ are already scheduled. If yes, this

task 1s added to the list RTL.
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Gr | Gp | terr | torey | tmu | tmmu

Gt | G2 37 35 | 35 35

T P
Gy | Gy | 45 51| 42| 42

Gt | G? 37 35 | 32 32
G | ¢} 59 57 | 54 54

Gt | G2 59 58 | 54 54

T P

G| &3 59 57 | 53 53
T P

G| G 18 18| 19 18
T P

G | G? 24 24 | 22 23

T 134
el e 19 19| 19 18
T P

Table 6.1: Comparison of scheduling heuristics

The time complexity of MMH is O((n + ¢)m + m’). The quality of schedules
15 good compared to other heuristics. Table 6.1 gives execution times of programs
scheduled by each of the heuristics: ETF, DFBN, MH, and MMH. Task graphs
presented on Figure 5.1, and processor graphs presented on Figure 5.2 were used
1in these tests. The 1dea of the table and the values for ETF and DFBN are taken
from [MT91].

In all cases schedules generated by MMH were at least as good as those gen-
erated by ETF and DFBN heuristics (in 7 out of 9 cases they were better). In
almost all cases (8 out of 9) execution times of schedules generated by MMH were

not longer than those of MH (two of the times are indeed shorter).



Chapter 7

Comparing topologies

Experiments comparing speedups achieved for different multiprocessor topologies
were a significant part of this project. Several topologies were investigated, some
of these were widely known and were described in literature (cf. Chapter 3), others

were designed specifically for this project.

In the first two sections of this chapter, task graphs and processor graphs used
in the experiments are described. In the rest of the chapter, results are presented

and discussed.

7.1 Task graphs

To clearly show differences between topologies, processor graphs must contain
at least tens of processors. It was decided to use processor graphs of orders up
to approximately one hundred. Task graphs used to measure qualities of such

processor graphs had to be of orders of at least a few hundred.

Computationally intensive programs offer different possible speedups than com-
munication intensive programs. Therefore 1t was necessary to investigate task

graphs with various ratios of communication to computation.

42
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These two facts were the reasons for the decision to use random task graphs
generated by a program with capabilities to change the above parameters. In
the case of task graphs obtained from real programs, arbitrary changes of these

parameters would not be possible.

To distinguish between computationally intensive and communication intensive
programs, an additional parameter, called the granularity of the task graph, was

defined.

Definition 7.1.1 Granularity of a task graph s a ratio of the sum of sizes of all

messages to the sum of sizes of all tasks.

Gp = <VP: EP)
> M(e)

The defimition has the following interpretation: granularity is a ratio of the
time required to send all the messages through a single link to the time required

to execute all tasks on a single processor.

The following task graph parameters were fed as input data to the program

which generated graphs:

e Minimum (n,,;,) and maximum (n,,,,) numbers of tasks. The actual order
of the task graph was picked at random (using uniform distribution) from
a range between n,,;, and n,,,,. In all experiments these values were set to

Nin = Roppar = 1.

e Minimum (INS, ..) and maximum (INS,, . ) task sizes.

mae ) Message sizes. M. M INS ..

and maximum (M

'mw"n)

e Minimum (M

INS, .. could be used to obtain the required granularity.
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e Maximum number of sources.

Task graphs generated by this program had vertices with out-degree not greater
than 10. The interpretation of this condition 1s that none of the tasks sends
messages to more than 10 successors. [t seems that task graphs obtained from

real programs would be characterized by a constraint of this kind.

7.2 Processor graphs

The following processor graphs were used in the experiments:

1. Complete binary tree: CBT(1), CBT(2),...,CBT(7).

2. Binary de Bruiyn graphs: UBB(1),..., UBB(7).

3. Kautz 2 graphs: UK(2,2),...,UK(2,86).

4. Kautz 3 graphs: UK(3,2),...,UK(3,4).

5. Hypercube: HC(1), ..., HC(7).

6. Enhanced hypercube: EHC(1),..., EHC(7).

7. Symmetrical 2-D mesh: MS(2), ..., MS(10).

8. Symmetrical torus: TS(1),..., TS(10).

9. Ring: R(2),...,R(6), R(10), R(20), R(30), R(40), R(80)

The topologies CBT(r), UBB(n), UK(2,n), UK(3,n), HC(rn), EHC(n), and
R{(n) have been already described in Chapter 3. MS(n) and TS(n) are the topolo-

gles described in Sections 3.2 and 3.3 respectively, with the additional constraint

that the width and height are equal: MS(n) = M(n, n), TS(n) = T(n, n).

Torus 2 (T(2,n)) and torus 4 (T(4,n)) have fixed widths of 2 and 4, respec-

tively.
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Enhanced complete binary trees

Even before starting the experiments, 1t seemed obvious that binary trees were
not well suited for applications with random traffic. The links near a root of a
tree would soon become bottlenecks, as all the traffic between processors in a left
subtree and processors in a right subtree would be directed through a root node.
Enhanced binary trees were an attempt to prevent this undesirable effect. The
obvious way of creating shorter paths between leaves 1s to connect each level of a
tree using one of the topologies described above. The simplest of them — a 1ing

— 15 used in graphs ECBT5(n).

ECBT5(2) ECBT5(4)

Figure 7.1: Enhanced binary trees ECBT5(n)

This topology 1s presented in Figure 7.1. For n > 6 the diameter of ECBT5(n)
15 equal to the diameter of CBT(n), but the average distance between vertices
15 smaller, and this value seems to be more important than a diameter. The

maximum degree of ECBT5(n) 1s 5 (hence the name).

Because many other topologies examined in the project have a maximum de-
gree A = 4, another version of an enhanced binary tree with a maximum degree
equal to 4 was designed, to make fair comparisons possible. In these graphs, called
ECBT4(n), ‘neighbouring’ vertices without common father are connected by an
edge. Examples of such trees are shown in Figure 7.2. For n > 5, the diameter of
ECBT4(n) is equal to the diameter of CBT(n), but again the average distance 1s

shorter.

These additional processor graphs were used in experiments:

1. Enhanced complete binary tree 4: ECBT4(1),..., ECBT4(7).



CHAPTER 7. COMPARING TOPOLOGIES 46

1

2 3
1
4 5 6
3 7
A 9 10 12 13 14 15
)

ECBT4(2) ECBT4(4

Figure 7.2: Enhanced binary trees ECBT4(n)

2. Enhanced complete binary tree 5. ECBT5(1),..., ECBT5(7).

Comparison of processor graphs

13 topologies were used throughout the experiments. Their properties are summer-
1zed 1 Table 7.1. The special role of processor graphs with fixed degrees should
be underlined here. In hardware terms, this means a constant number of links
per processor. It 1s a very desirable feature of an interconnection topology. The
cost of building a multiprocessor of such components can be considerably lower.
Specifically, topologies with a degree 4 or smaller can be implemented directly

using transputers, as these have four links.

Topologies used here can be divided into three groups according to the order

of their diameters.

e [ogarithmic group
® sguare root group

e [inear group

It 1s natural to expect that processor graphs from a group with a lower diameter
order should outperform processor graphs with higher diameter orders (at least

for greater number of processors).



CHAPTER 7. COMPARING TOPOLOGIES

47

Topology Max. degree | Diameter
CBT(n) 3 O(log, |V1)
ECBT4(n) 4 O(log, |V1)
ECBT5(n) 5 O(log, [V)
UBB(n) 4 O(log, [V)
UK(2,n) 4 O(log, |V1)
UK(3,n) 6 O(log, |V1)
HC(n) log, [V] | Oflog, [V])

EHC(n) log, |[V|+1 | O(log, |V])

MS(n) 4 O/ V1)
TS(n) 4 O/ V1)
T(2,n) 4 o(|V|)
T(4,n) 4 o(|V|)
R{n) 2 o(IV1)

Table 7.1: Comparison of topological properties of processor graphs

7.3 Experiments

Experiments were grouped in series. In one series three task graphs with the
same granularity were scheduled onto each of the processor graphs listed in the
beginmng of Section 7.2. The execution of programs scheduled in this way was
simulated. In this simulation contention was taken into account. The routing
algorithm directed messages through a shortest path. If more parallel shortest

paths existed, one of them was picked at random, to distribute the traffic evenly.

The simulator took three inputs: a task graph, a processor graph, and a sched-
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ule and produced one value as an output: the execution time ¢ ,.. The parallel
execution time was converted to a speedup as this made comparisons between
results for task graphs of different granularities easier.

Definition 7.3.1 A sequential execution time of a task graph t.., 1s the sum of

seq

sizes of all tasks wn the graph.
Gr = (Vr, Br)
teg = Z INS(v)

vEVr

Definition 7.3.2 A speedup ¢ of a program 1s a ratio of the sequential execution

time to the parallel ezecution time of this program.

Another way of interpreting the result of the simulation 1s to convert it to a
utilization of a multiprocessor, which indicates what percentage of the CPU time

was spent on program execution.

Definition 7.3.3 A uiilization p of a multiprocessor represented by a processor
graph Gp during the execution of a program represented by the task graph Gp s a
ratio of the sum of all task sizes to the total reserved time (including idle time) of
all processors.
Gr = {Vr, BEr)
Gp = {Vp, Ep)
Z INS(v)

. vEVr
|VP| X tpa.r
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By comparing Definitions 7.3.1, 7.3.2, and 7.3.3, 1t 1s easy to observe that the
last formula may be simplified to:

o

p=—

m
where m 1s the number of processors.

Utilization 1s a very important measure of the quality of a schedule as 1t in-
dicates the time spent in a multiprocessor on doing useful work. It 1s possible,
therefore, to set a lower limt on utilization of employed resources. The exact

value 15 a tradeoff between the speedup and economical considerations.

In the rest of this section results of the experiments will be presented and
discussed. The graphs were plotted using the average of results for three task
graphs of the same granularity. In this section (as throughout the entire report) n
15 the number of tasks, ¢ — a number of edges in a task graph, and m — number

of processors.

Total of 80 processor graphs were used. They were all assumed to be homoge-
neous, 1.e. all processors were capable of executing any task with the same speed,

all links had the same speeds and initialization times.
\V(GP = <VTJ ET) - ‘V(U c VT . S(U) = ].

\V(GP = <VT,ET)'\V(€€ET'C(€) :1/\I(e) =10

Each series consisted of 240 experiments (3 task graphs scheduled onto 80 processor

graphs).

First series: g = 0.01, n = 1000

In this series of experiments, task graphs of granularity 0.01 were used. Such

graphs can be said to represent computationally intensive programs, 1.e. programs
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Speedup (Granularity 0.01)
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Figure 7.3: Speedups: ¢ = 0.01, n = 1000

with messages of very small sizes as compared to task sizes. It could be expected
that speedups achieved for this granularity would be (almost) independent on the
interconnection pattern of a multiprocessor. Indeed, results obtained for all the

topologies are almost 1identical — see Figures 7.3, 7.4, 7.5, and 7.6.

Note that, because 13 topologiles were examined in the experiments, it wasn't
practical to present results for all topologies in a single graph. Therefore topologies
were divided, somewhat arbitrarily, into two groups. The first of them contained
all processor graphs with logarithmic diameters, the second — all other processor

graphs.
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Speedup (Granularity 0.01)
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Figure 7.4: Speedups: ¢ = 0.01, n = 1000

The granularity 0.01 1s in this case optimal in the sense that the results for a
small granularity present upper bounds for speedups possible to achieve with this
scheduler for task graphs of this size and granularity generated in the same way.
It could be expected that the results for task graphs of higher granularities would

be worse.

Good, quasi-linear increase of speedup was achieved for processor graphs with
up to 60 processors. Above 60 processors, the graphs in Figures 7.3, 7.4 saturates

and further increases of number of processors only slightly increase speedups.

Furthermore, if we define a ‘good result’ as a schedule which achieves a uti-
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Utilization (Granularity 0.01)
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Figure 7.5: Utilization: ¢ = 0.01, n = 1000

lization of at least 50%, then for all processor graphs, ‘good results’ were obtained

for up 100 processors.

Second series: ¢ = 0.5, n = 1000

As the granularity is increased for the same number of processors, differences be-
tween topologies become visible. Looking at Figures 7.7 and 7.8, we can distinguish

two groups of topologies:
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Utilization (Granularity 0.01)
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Figure 7.6: Utilization: ¢ = 0.01, n = 1000

e HC(n), EHC(n), UK(2,n), UK(3,n), UBB(n), and TS(n). Speedups for
these processor graphs grow relatively fast and almost linearly as the number
of processors increases up to 60. Between 60 and 120, speedups grow slowly

and reach a maximum of 40-45.

e MS(n), R(n), T(2,n), T(4,n), ECBT5(n), CBT(n). Speedups for these
topologies occupy a wider spectrum, with maximum speedup ranging from

32 (MS(10)) to 9 (CBT(7)).

Third series: g =2, n = 1000
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Speedup (Granularity 0.5)
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Figure 7.7: Speedups: ¢ = 0.5, n = 1000

Programs represented by task graphs with granularity 2 may be viewed as pro-
grams with time necessary to send all messages over a single link twice as large
as the sequential execution time. One can argue whether programs like these
should be parallelized in the first place (although in the experiments considerable
speedups were achieved). Such extreme cases show, however, more clearly differ-
ences between topologies. Figures 7.9, 7.10, 7.11, and 7.12 show results achieved

for task graphs with this granularity.

The results for processor graphs with fewer than 30 processors do not show
enough differences between topologies to order them according to their “quality”

(quality of a processor graph is measured by a speedup achieved for a given task
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Speedup (Granularity 0.5)
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Figure 7.8: Speedups: ¢ = 0.5, n = 1000

graph). For 30 and more processors, differences become very clear. Accurate
comparison 1s not possible, because most of examined processor graphs are defined
only for some numbers of processors. By examining Figures 7.9 and 7.10 1t 1s,
however, easy to observe that it can be assumed that a continuous graph of a
speedup of a given topology created by connecting with lines subsequent points of

15 a good approximation of an ideal continuous graph.

Speedups for topologies of the logarithmic group do not decrease as the number
of processors grows. On the other hand, the performance of processor graphs of
the linear group falls after reaching a maximum. A symmetrical mesh behaves

like topologies from the linear group, and a symmetrical torus, like topologies
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Speedup (Granularity 2)
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Figure 7.9: Speedups: ¢ = 2, n = 1000

from the logarithmic group. This is easy to explain for (enhanced) hypercubes
and (enhanced) trees, because in these topologies it is possible to find subgraphs
with smaller numbers of processors. So if, for example, an optimal schedule for a
given task graph scheduled onto a hypercube is obtained for HC(3), the scheduler
when generating a schedule for HC(6) can obtain the optimal speedup by using
only 8 processors forming a subcube HC(3). Such a subcube is guaranteed to exist

(cf. Section 3.5).
This strategy 1s, of course, not possible for ring-like topologies.

This easy explanation of the phenomenon 1s not sufficient for a symmetrical
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Speedup (Granularity 2)
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Figure 7.10: Speedups: ¢ = 2, n = 1000

torus, but, perhaps, a decrease of speedups would be observed for higher numbers

of processors.

For 64 processors, the order of the topologies, from the best to the worst, 1s:
EHC(n), UK(3,n), HC(n), UK(2,n), UBB(n), TS(n), T(4,n), ECBT5(n), MS(n),
ECBT4(n), T(2,n), R(n), and CBT(n).

The order 1s slightly different for different numbers of processors, namely:

e for m < 40, UK(3, n) is better than EHC(n).

e for m > 80, MS(n) is better than T(2,n).
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Utilization (Granularity 2)
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Figure 7.11: Utilization: ¢ = 2, n = 1000

Apart from these, the above order is valid for all values of m greater than 30.

The results show that binary trees (also the enhanced versions, even though
they offer 3 to 4 times better performance), mesh, and ring-like graphs (1.e. R(n),

T(2,n), and T(4,n)) are not suitable for these types of applications.

The best speedups are obtained for enhanced hypercubes, which i1s hardly
surprising because enhanced hypercubes are the most expensive topologies in the

terms of number of links per processor.

Of the topologies with the maximum degree 4, three are evidently best: UK(2, n),

UBB(n), and TS(n). Differences between them are only minimal, so the choice 1s
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Utilization (Granularity 2)
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Figure 7.12: Utilization: ¢ = 2, n = 1000

not obvious. All three seem to be equally good.

7.4 Estimating the quality of a topology

A way of comparing topologies without trying to schedule task graphs onto them

would be very useful. In this section a single value characterizing a processor

graph 1s proposed.

Two factors decide how big a maximum speedup can be:
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e average distance between nodes (rather than diameter of the graph)

e number of parallel shortest paths between nodes

The first value 1s very easy to compute. It 1s formally defined as follows:

Definition 7.4.1 Average distance, d, of a processor graph Gp = (Vp, Ep) 15 a
ratio of @ sum of distances between all patrs of nodes to the number of such pasrs.

Z a(u,v)

u,vEVp

d=
Vel?

where a(u, v) is the distance between u and v.

Calculating the second one 1s in general not so straightforward, it can be, how-
ever, estimated by a number of links per node. Rather than taking the maximum

degree, the average number of links per node (average degree, A) should be used.

The average degree of a graph G = (V;, E7) 1s

— E
~_ Il
27|

Average distance should be minimmzed, the average degree should be max-

mized, so a naive way of combining them 1s to use a ratio of one of them to the

other. A “goodness factor” — a parameter characterizing a processor graph —

can be defined.

Definition 7.4.2 A goodness factor of a processor graph 1s a ratio of the average

vertez degree of this graph to ifs average distance.

f-'-‘r..|| D|
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Figure 7.13: Goodness factors
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Figures 7.13 and 7.14 show the graphs of a goodness factor. The correlation

between speedups achieved in the third series of experiments, and the goodness

factor 1s very big. The values for 64 processors are summarized in Table 7.2.

The relative qualities of T(4,n) and ECBT5(n) and of CBT(n) and of R(n)

are not estimated correctly. But taking into account that this is only a heuristic

estimation of the quality of the topology, the correlation seems to be satisfactory.
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Speeip | oot
Enhanced hypercube 25.5 2.9
Kautz graph UK(3, n) 21.0 2.3
Hypercube 19.0 2.0
Kautz graph UK(2, n) 16.0 1.1
Binary de Bruin graph 15.0 1.1
Symmetrical torus 14.5 1.0
Torus T(4,n) 10.0 0.8
Enhanced binary tree ECBT5(n) | 9.0 0.9
Symmetrical 2-D mesh 9.0 0.7
Enhanced binary tree ECBT4(n) | 7.0 0.6
Torus T(2, n) 5.8 0.4
Complete binary tree 2.5 0.3
Ring 3.5 0.1

Table 7.2: Speedups and goodness factors for 64 processors

62
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Chapter 8

Conclusions/Outlook

The main results of this project are:

o A new scheduling heuristic MMH.
o Comparison of several potential multiprocessor topologies.

e Proposal of a goodness factor as a way of estimating the quality of ¢ topology.

MMH 1s not a completely new heuristic. It 1s merely a modification of the
already existing algorithm, the Mapping Heuristic. Schedules generated by MMH
are 1n many cases 1dentical to those generated by MH. A thorough comparison of
the two heuristics has not been conducted. For a few processor graphs and task

graphs which were considered, MMH performed favourably.

The main reason for modifying MH was, however, to obtain a faster algorithm.
This goal was achieved — time complexity of MMH 1s lower than time complexity
of MH. The MMH algorithm could be perhaps further improved. It seems
unlikely that a lower time complexity could be achieved, but schedules of better

quality could be possibly generated.

Comparison of several topologies revealed the ones which were best suited for

this kind of applications, 1.e. applications with random traffic. These results, of
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course, do not preclude topologies which were evaluated here as “bad” from being
used in other types of applications, e.g. programs showing so called geometric

parallelism.

Further work is possible here by examining new topologies and by performing
experiments for large task graphs obtained from real programs. Only small real-life
task graphs were examined. Because numbers of processors were small, schedules

for different multiprocessors were similar.

Lastly, further work 1s possible with the proposed goodness factor. Naively
defined goodness factor showed a surprising correlation with achieved speedups.
It seems possible, however, that a more accurate method for estimating a quality

of a topology could be found by a more elaborate formulation.

The restricted amount of time made 1t impossible to investigate further these

interesting problems.
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